Water-Energy Nexus Draft Calculator 2.0 Stakeholder Webinar

October 8, 2021, 2 – 3 p.m. PDT

Travis Holtby – CPUC Heather Cooley – Pacific Institute Jeff Sage-Lauck – SBW Consulting

California Public Utilities Commission

Webex Participant Guide

Gray means "on" (Not Muted, Sharing Video)

Link to: <u>Cisco Webex Participant</u> <u>Guide</u>

If your video is

on, you will see

Red means "off" (Muted, Not Sharing Video)

California Public Utilities Commission

- Project Goals, Objectives, Deliverables, and Timeline
- Water-Energy (W-E) Calculator Background
- W-E Calculator 2.0: Key Enhancements
- W-E Calculator 2.0: Demonstration
- Integration with other CPUC Tools: Near and Long Term
- Next Steps: Beta Test the W-E Calculator 2.0 and Guidance Manual

Project Goals and Objectives

- The goal of the project is to develop a new, simpler Water-Energy Calculator (W-E Calculator 2.0).
- In support of this goal, there are three primary objectives:
 - 1. Engage stakeholders to identify key issues and concerns to inform changes to the W-E Calculator;
 - 2. Revise the W-E Calculator, in accordance with Decision 17-12-010, the Water Energy Joint Utility Plan of Action, and input received from stakeholders; and
 - Provide readable and accessible documentation for the W-E Calculator
 2.0, along with a help desk and recorded training session.

Project Deliverables

1. W-E Calculator 2.0 Workplan: The workplan was presented in March 2021 and finalized in April 2021.

2. W-E Calculator 2.0: A new, improved, and simpler W-E Calculator to estimate the embedded-energy savings of water conservation activities.

3. Guidance manual for W-E Calculator 2.0: The guidance manual for using the W-E Calculator 2.0 and recorded training sessions.

4. Project report: The final report documenting the process for developing the revised W-E Calculator.

Project Timeline

- Project Goals, Objectives, Deliverables, and Timeline
- Water-Energy (W-E) Calculator Background
- W-E Calculator 2.0: Key Enhancements
- W-E Calculator 2.0: Demonstration
- Integration with other CPUC Tools: Near and Long Term
- Next Steps: Beta Test the W-E Calculator 2.0 and Guidance Manual

Water-Energy (W-E) Calculator Background

- In 2015, the CPUC adopted two water-energy tools:
- Avoided Water Capacity Cost Model (Water Tool)
 - avoided capacity cost of water (in \$/MGD).
- Water-Energy Calculator (W-E Calculator)
 - average embedded energy savings of water-efficiency programs (in kWh and therms),
 - IOU avoided embedded-energy cost (in \$); and
 - avoided water capacity cost (in \$).

W-E Calculator 1.0 Schematic

Capacity Cost Model – Avoided Capacity

Cost (\$/MGD)

Avoided Water

Capacity Cost (\$)

- Project Goals, Objectives, Deliverables, and Timeline
- Water-Energy (W-E) Calculator Background
- W-E Calculator 2.0: Key Enhancements
- W-E Calculator 2.0: Demonstration
- Integration with other CPUC Tools: Near and Long Term
- Next Steps: Beta Test the W-E Calculator 2.0 and Guidance Manual

Key Enhancements of the W-E Calculator 2.0

- Removed the cost-effectiveness analyses (focused on embedded energy estimate, in kWh)
- Added simple menu to select water system components and energy
 intensity values
- Updated the model default energy intensity values
- Added a look-up table to select the appropriate hydrologic region for the project using installation zip code
- Provided an easier way to adjust the resource balance year

Regional Analysis

- The regional unit of interest is the hydrologic region.
- W-E Calculator 2.0 uses zip code to assign the measure to a hydrologic region.
- The zip code is assigned to the hydrologic region representing the largest areal extent (i.e., majority rules).

Resource Balance Year

- Default for Resource Balance Year (RBY) is 2016, consistent with CPUC directive D. 15-09-023, but the default can be overridden by the user.
- Prior to the RBY, the calculator uses the historical water-supply mix to calculate an "historical" embedded-energy savings.
- In the RBY and beyond, the calculator uses the marginal water supply to calculate a "marginal" embedded-energy savings.
- If some water savings occur prior to the RBY and some after the RBY, then the model estimates the annualized embedded-energy savings.

W-E Calculator 2.0 Schematic

- Project Goals, Objectives, Deliverables, and Timeline
- Water-Energy (W-E) Calculator Background
- W-E Calculator 2.0: Key Enhancements
- W-E Calculator 2.0: Demonstration
- Integration with other CPUC Tools: Near and Long Term
- Next Steps: Beta Test the W-E Calculator 2.0 and Guidance Manual

Water-Energy Calculator 2.0: Demonstration

Example Measures

- Low-flow showerheads installed in a hotel in San Francisco
 - Marginal supply: non-potable recycled water
 - Two scenarios for Resource Balance Year
 - Default of 2016
 - User override of 2026
- Drip irrigation system installed outside of Fresno
 Marginal supply: non-potable recycled water
- Repair of distribution system leaks in San Diego
 Marginal supply: desalinated seawater

Embedded Energy Savings: New Model vs Old Model

Comparison of Examples

		Hydrologic		Measure	Annual Water Savings	Annual IOU Energy Sav	Embedded ings (kWh)	%
Example	RBY	Region	Sector	Туре	(gallons)	WE Calc 1.0	WE Calc 2.0	Difference
Showerheads	2016	San Francisco Bay	Urban	Indoor	2,979	8.1	16.2	101%
Showerheads	2026	San Francisco Bay	Urban	Indoor	2,979	8.1	14.0	73%
Drip Irrigation	2016	San Joaquin	Ag	Outdoor	10,000	5.4	21.3	295%
Repair System Leaks	2016	South Coast	Urban	System Leaks	80,000	108.0	1098.9	918%

Average difference across all hydrologic regions and measures

Sector	Measure Type	Average Difference	
Urban	Indoor	142%	
Urban	Outdoor	226%	
Ag	Indoor/Outdoor	245%	
Overall Differen	ce	183%	

Note: after the 10/8 webinar, these values were updated using a more accurate calculation. The underlying data has not changed.

19

- Project Goals, Objectives, Deliverables, and Timeline
- Water-Energy (W-E) Calculator Background
- W-E Calculator 2.0: Key Enhancements
- W-E Calculator 2.0: Demonstration
- Integration with other CPUC Tools: Near and Long Term
- Next Steps: Beta Test the W-E Calculator 2.0 and Guidance Manual

Integration with Other CPUC Tools: Near Term

Integration with Other CPUC Tools: Long Term

- Project Goals, Objectives, Deliverables, and Timeline
- Water-Energy (W-E) Calculator Background
- W-E Calculator 2.0: Key Enhancements
- W-E Calculator 2.0: Demonstration
- Integration with other CPUC Tools: Near and Long Term
- Next Steps: Beta Test the W-E Calculator 2.0 and Guidance Manual

Next Steps: Beta Test the W-E Calculator 2.0 and Guidance Manual

The draft calculator is available for review and comment through <u>November 5th</u>. Please emails all comments to Travis, Heather, and Jeff.

The draft calculator and guide (and soon a recording of the demo) are available at the CPUC's website:

https://www.cpuc.ca.gov/nexus_calculator/

We will also offer a Help Desk during the comment period. For assistance, please email Jeff Sage-Lauck (jsagelauck@sbwconsulting.com) and Heather Cooley (hcooley@pacinst.org).

Key Contacts

Heather Cooley (Project Lead) Director of Research, Pacific Institute <u>hcooley@pacinst.org</u>

Sonali Abraham, D. Env Research Associate, Pacific Institute <u>sabraham@pacinst.org</u>

Morgan Shimabuku Research Associate, Pacific Institute <u>mshimabuku@pacinst.org</u> Bing Tso President, SBW Consulting, Inc. <u>btso@sbwconsulting.com</u>

Jeff Sage-Lauck Engineer/Analyst, SBW Consulting, Inc. jsagelauck@sbwconsulting.com

Travis Holtby EE Planning and Forecasting, CPUC travis.holtby@cpuc.ca.gov

Questions?

California Public Utilities Commission